Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Clin Infect Dis ; 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2297119

ABSTRACT

BACKGROUND: This study compared admission incidence risk across waves, and the risk of mortality in the Omicron BA.4/BA.5 wave, to the Omicron BA.1/BA.2 and Delta waves. METHODS: Data from South Africa's national hospital surveillance system, SARS-CoV-2 case linelist and Electronic Vaccine Data System were linked and analysed. Wave periods were defined when the country passed a weekly incidence of 30 cases/100,000 people. In-hospital case fatality ratios (CFR) in the Delta, Omicron BA.1/BA.2 and Omicron BA.4/BA.5 wave periods were compared by post-imputation random effect multivariable logistic regression models. RESULTS: The CFR was 25.9% (N = 37,538/144,778), 10.9% (N = 6,123/56,384) and 8.2% (N = 1,212/14,879) in the Delta, Omicron BA.1/BA.2, and Omicron BA.4/BA.5 waves respectively. After adjusting for age, sex, race, comorbidities, health sector and province, compared to the Omicron BA.4/BA.5 wave, patients had higher risk of mortality in the Omicron BA.1/BA.2 wave (adjusted odds ratio [aOR] 1.3; 95% confidence interval [CI] 1.2-1.4) and Delta (aOR 3.0; 95% CI 2.8-3.2) wave. Being partially vaccinated (aOR 0.9, CI 0.9-0.9), fully vaccinated (aOR 0.6, CI 0.6-0.7) and boosted (aOR 0.4, CI 0.4-0.5); and prior laboratory-confirmed infection (aOR 0.4, CI 0.3-0.4) were associated with reduced risks of mortality. CONCLUSION: Overall, admission incidence risk and in-hospital mortality, which had increased progressively in South Africa's first three waves, decreased in the fourth Omicron BA.1/BA.2 wave and declined even further in the fifth Omicron BA.4/BA.5 wave. Mortality risk was lower in those with natural infection and vaccination, declining further as the number of vaccine doses increased.

2.
Clin Infect Dis ; 2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-2231966

ABSTRACT

BACKGROUND: In South Africa, 19% of the adult population are living with HIV (LWH). Few data on the influence of HIV on SARS-CoV-2 household transmission are available. METHODS: We performed a case-ascertained, prospective household transmission study of symptomatic index SARS-CoV-2 cases LWH and HIV-uninfected adults and their contacts in South Africa, October 2020 to September 2021. Households were followed up thrice weekly for 6 weeks to collect nasal swabs for SARS-CoV-2 testing. We estimated household cumulative infection risk (HCIR) and duration of SARS-CoV-2 positivity (at cycle threshold value <30 as proxy for high viral load). RESULTS: We recruited 131 index cases and 457 household contacts. HCIR was 59% (220/373); not differing by index HIV status (60% [51/85] in cases LWH vs 58% [163/279] in HIV-uninfected cases, OR 1.0, 95%CI 0.4-2.3). HCIR increased with index case age (35-59 years: aOR 3.4 95%CI 1.5-7.8 and ≥60 years: aOR 3.1, 95%CI 1.0-10.1) compared to 18-34 years, and contacts' age, 13-17 years (aOR 7.1, 95%CI 1.5-33.9) and 18-34 years (aOR 4.4, 95%CI 1.0-18.4) compared to <5 years. Mean positivity duration at high viral load was 7 days (range 2-17), with longer positivity in cases LWH (aHR 0.4, 95%CI 0.1-0.9). CONCLUSIONS: Index HIV status was not associated with higher HCIR, but cases LWH had longer positivity duration at high viral load. Adults aged >35 years were more likely to transmit, individuals aged 13-34 to acquire SARS-CoV-2 in the household. As HIV infection may increase transmission, health services must maintain HIV testing and antiretroviral therapy initiation.

3.
Open Forum Infect Dis ; 9(12): ofac578, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2190075

ABSTRACT

Background: Data on risk factors for coronavirus disease 2019 (COVID-19)-associated hospitalization and mortality in high human immunodeficiency virus (HIV) prevalence settings are limited. Methods: Using existing syndromic surveillance programs for influenza-like-illness and severe respiratory illness at sentinel sites in South Africa, we identified factors associated with COVID-19 hospitalization and mortality. Results: From April 2020 through March 2022, severe acute respiratory syndrome coronavirus 2 was detected in 24.0% (660 of 2746) of outpatient and 32.5% (2282 of 7025) of inpatient cases. Factors associated with COVID-19-associated hospitalization included the following: older age (25-44 [adjusted odds ratio {aOR}= 1.8, 95% confidence interval (CI) = 1.1-2.9], 45-64 [aOR = 6.8, 95% CI = 4.2-11.0] and ≥65 years [aOR = 26.6, 95% CI = 14.4-49.1] vs 15-24 years); black race (aOR, 3.3; 95% CI, 2.2-5.0); obesity (aOR, 2.3; 95% CI, 1.4-3.9); asthma (aOR, 3.5; 95% CI, 1.4-8.9); diabetes mellitus (aOR, 5.3; 95% CI, 3.1-9.3); HIV with CD4 ≥200/mm3 (aOR, 1.5; 95% CI, 1.1-2.2) and CD4 <200/mm3 (aOR, 10.5; 95% CI, 5.1-21.6) or tuberculosis (aOR, 12.8; 95% CI, 2.8-58.5). Infection with Beta (aOR, 0.5; 95% CI, .3-.7) vs Delta variant and being fully vaccinated (aOR, 0.1; 95% CI, .1-.3) were less associated with COVID-19 hospitalization. In-hospital mortality was increased in older age (45-64 years [aOR, 2.2; 95% CI, 1.6-3.2] and ≥65 years [aOR, 4.0; 95% CI, 2.8-5.8] vs 25-44 years) and male sex (aOR, 1.3; 95% CI, 1.0-1.6) and was lower in Omicron-infected (aOR, 0.3; 95% CI, .2-.6) vs Delta-infected individuals. Conclusions: Active syndromic surveillance encompassing clinical, laboratory, and genomic data identified setting-specific risk factors associated with COVID-19 severity that will inform prioritization of COVID-19 vaccine distribution. Elderly people with tuberculosis or people with HIV, especially severely immunosuppressed, should be prioritized for vaccination.

4.
J Pediatric Infect Dis Soc ; 12(3): 128-134, 2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2189252

ABSTRACT

BACKGROUND: South Africa experienced four waves of SARS-CoV-2 infection, dominated by Wuhan-Hu, Beta, Delta, and Omicron (BA.1/BA.2). We describe the trends in SARS-CoV-2 testing, cases, admissions, and deaths among children and adolescents in South Africa over successive waves. METHODS: We analyzed national SARS-CoV-2 testing, case, and admissions data from March 2020 to February 2022 and estimated cumulative rates by age group for each endpoint. The severity in the third versus the fourth wave was assessed using multivariable logistic regression. RESULTS: Individuals ≤18 years comprised 35% (21,008,060/60,142,978) of the population but only 12% (424,394/3,593,644) of cases and 6% (26,176/451,753) of admissions. Among individuals ≤18 years, infants had the highest admission (505/100,000) rates. Testing, case, and admission rates generally increased successively in the second (Beta) and third (Delta) waves among all age groups. In the fourth (Omicron BA.1/BA.2) wave, the case rate dropped among individuals ≥1 year but increased among those <1 year. Weekly admission rates for children <1 year (169/100,000) exceeded rates in adults (124/100,000) in the fourth wave. The odds of severe COVID-19 in all admitted cases were lower in the fourth wave versus the third wave in each age group, but they were twice as high in admitted cases with at least one comorbidity than those without. CONCLUSIONS: The admission rate for children <5 years was higher in the fourth wave than in previous waves, but the overall outcomes were less severe. However, children with at least one comorbidity had increased odds of severe disease, warranting consideration of prioritizing this group for vaccination.


Subject(s)
COVID-19 , Adult , Infant , Humans , Adolescent , Child , COVID-19/epidemiology , SARS-CoV-2 , COVID-19 Testing , South Africa/epidemiology , Hospitalization
5.
Int J Infect Dis ; 125: 241-249, 2022 Nov 05.
Article in English | MEDLINE | ID: covidwho-2095476

ABSTRACT

OBJECTIVES: After South Africa's second wave of COVID-19, this study estimated the SARS-CoV-2 seroprevalence among pregnant women in inner-city Johannesburg, South Africa. METHODS: In this cross-sectional survey, 500 pregnant women who were non-COVID-19-vaccinated (aged ≥12 years) were enrolled, and demographic and clinical data were collected. Serum samples were tested using the Wantai SARS-CoV-2 spike antibody enzyme-linked immunosorbent assay and Roche Elecsys® anti-SARS-CoV-2 nucleocapsid antibody assays. Seropositivity was defined as SARS-CoV-2 antibodies on either (primary) or both (secondary) assays. Univariate Poisson regression assessed risk factors associated with seropositivity. RESULTS: The median age was 27.4 years, and HIV prevalence was 26.7%. SARS-CoV-2 seroprevalence was 64.0% (95% confidence interval [CI]: 59.6-68.2%) on the primary and 54% (95% CI: 49.5-58.4%) on the secondary measure. Most (96.6%) women who were SARS-CoV-2-seropositive reported no symptoms. On the Roche assay, we detected lower seroprevalence among women living with HIV than women without HIV (48.9% vs 61.7%, P-value = 0.018), and especially low levels among women living with HIV with a clusters of differentiation 4 <350 cells/ml compared with women without immune suppression (22.2% vs 56.4%, prevalence rate ratio = 0.4; 95% CI: 0.2-0.9; P-value = 0.046). CONCLUSION: Pregnant women attending routine antenatal care had a high SARS-CoV-2 seroprevalence after the second wave in South Africa, and most had asymptomatic infections. Seroprevalence surveys in pregnant women present a feasible method of monitoring the course of the pandemic over time.

6.
Glob Health Epidemiol Genom ; 2022: 7405349, 2022.
Article in English | MEDLINE | ID: covidwho-2079092

ABSTRACT

Host genetic factors are known to modify the susceptibility, severity, and outcomes of COVID-19 and vary across populations. However, continental Africans are yet to be adequately represented in such studies despite the importance of genetic factors in understanding Africa's response to the pandemic. We describe the development of a research resource for coronavirus host genomics studies in South Africa known as COVIGen-SA-a multicollaborator strategic partnership designed to provide harmonised demographic, clinical, and genetic information specific to Black South Africans with COVID-19. Over 2,000 participants have been recruited to date. Preliminary results on 1,354 SARS-CoV-2 positive participants from four participating studies showed that 64.7% were female, 333 had severe disease, and 329 were people living with HIV. Through this resource, we aim to provide insights into host genetic factors relevant to African-ancestry populations, using both genome-wide association testing and targeted sequencing of important genomic loci. This project will promote and enhance partnerships, build skills, and develop resources needed to address the COVID-19 burden and associated risk factors in South African communities.


Subject(s)
COVID-19 , Female , Humans , Male , South Africa/epidemiology , COVID-19/epidemiology , COVID-19/genetics , Genome-Wide Association Study , SARS-CoV-2/genetics , Genomics
7.
Nat Commun ; 13(1): 5860, 2022 10 04.
Article in English | MEDLINE | ID: covidwho-2050384

ABSTRACT

Omicron lineages BA.4 and BA.5 drove a fifth wave of COVID-19 cases in South Africa. Here, we use the presence/absence of the S-gene target as a proxy for SARS-CoV-2 variant/lineage for infections diagnosed using the TaqPath PCR assay between 1 October 2021 and 26 April 2022. We link national COVID-19 individual-level data including case, laboratory test and hospitalisation data. We assess severity using multivariable logistic regression comparing the risk of hospitalisation and risk of severe disease, once hospitalised, for Delta, BA.1, BA.2 and BA.4/BA.5 infections. After controlling for factors associated with hospitalisation and severe outcome respectively, BA.4/BA.5-infected individuals had a similar odds of hospitalisation (aOR 1.24, 95% CI 0.98-1.55) and severe outcome (aOR 0.72, 95% CI 0.41-1.26) compared to BA.1-infected individuals. Newly emerged Omicron lineages BA.4/BA.5 showed similar severity to the BA.1 lineage and continued to show reduced clinical severity compared to the Delta variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , South Africa/epidemiology
8.
Clin Infect Dis ; 75(1): e57-e68, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2008554

ABSTRACT

BACKGROUND: Seroprevalence studies are important for quantifying the burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in resource-constrained countries. METHODS: We conducted a cross-sectional household survey spanning the second pandemic wave (November 2020 to April 2021) in 3 communities. Blood was collected for SARS-CoV-2 antibody (2 enzyme-linked immunosorbent assays targeting spike and nucleocapsid) and human immunodeficiency virus (HIV) testing. An individual was considered seropositive if testing positive on ≥1 assay. Factors associated with infection, and the age-standardized infection case detection rate, infection hospitalization rate, and infection fatality rate were calculated. RESULTS: Overall, 7959 participants were enrolled, with a median age of 34 years and an HIV prevalence of 22.7%. SARS-CoV-2 seroprevalence was 45.2% (95% confidence interval 43.7%-46.7%) and increased from 26.9% among individuals enrolled in December 2020 to 47.1% among those enrolled in April 2021. On multivariable analysis, seropositivity was associated with age, sex, race, being overweight/obese, having respiratory symptoms, and low socioeconomic status. Persons living with HIV with high viral load were less likely to be seropositive than HIV-uninfected individuals. The site-specific infection case detection rate, infection hospitalization rate, and infection fatality rate ranged across sites from 4.4% to 8.2%, 1.2% to 2.5%, and 0.3% to 0.6%, respectively. CONCLUSIONS: South Africa has experienced a large burden of SARS-CoV-2 infections, with <10% of infections diagnosed. Lower seroprevalence among persons living with HIV who are not virally suppressed, likely as a result of inadequate antibody production, highlights the need to prioritize this group for intervention.


Subject(s)
COVID-19 , HIV Infections , Adult , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , HIV , HIV Infections/complications , HIV Infections/epidemiology , Humans , SARS-CoV-2 , Seroepidemiologic Studies , South Africa/epidemiology
9.
Clin Infect Dis ; 75(1): e144-e156, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1821725

ABSTRACT

BACKGROUND: We assessed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA shedding duration and magnitude among persons living with human immunodeficiency virus (HIV, PLHIV). METHODS: From May through December 2020, we conducted a prospective cohort study at 20 hospitals in South Africa. Adults hospitalized with symptomatic coronavirus disease 2019 (COVID-19) were enrolled and followed every 2 days with nasopharyngeal/oropharyngeal (NP/OP) swabs until documentation of cessation of SARS-CoV-2 shedding (2 consecutive negative NP/OP swabs). Real-time reverse transcription-polymerase chain reaction testing for SARS-CoV-2 was performed, and cycle-threshold (Ct) values < 30 were considered a proxy for high SARS-CoV-2 viral load. Factors associated with prolonged shedding were assessed using accelerated time-failure Weibull regression models. RESULTS: Of 2175 COVID-19 patients screened, 300 were enrolled, and 257 individuals (155 HIV-uninfected and 102 PLHIV) had > 1 swabbing visit (median 5 visits [range 2-21]). Median time to cessation of shedding was 13 days (interquartile range [IQR] 6-25) and did not differ significantly by HIV infection. Among a subset of 94 patients (41 PLHIV and 53 HIV-uninfected) with initial respiratory sample Ct-value < 30, median time of shedding at high SARS-CoV-2 viral load was 8 days (IQR 4-17). This was significantly longer in PLHIV with CD4 count < 200 cells/µL, compared to HIV-uninfected persons (median 27 days [IQR 8-43] vs 7 days [IQR 4-13]; adjusted hazard ratio [aHR] 0.14, 95% confidence interval [CI] .07-.28, P < .001), as well as in unsuppressed-HIV versus HIV-uninfected persons. CONCLUSIONS: Although SARS-CoV-2 shedding duration did not differ significantly by HIV infection, among a subset with high initial SARS-CoV-2 viral loads, immunocompromised PLHIV shed SARS-CoV-2 at high viral loads for longer than HIV-uninfected persons. Better HIV control may potentially decrease transmission time of SARS-CoV-2.


Subject(s)
COVID-19 , HIV Infections , Adult , HIV , HIV Infections/complications , HIV Infections/epidemiology , Humans , Prospective Studies , RNA, Viral , SARS-CoV-2 , South Africa/epidemiology , Viral Load , Virus Shedding
10.
Clin Infect Dis ; 75(1): e1000-e1010, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1816032

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused severe disruptions to healthcare in many areas of the world, but data remain scarce for sub-Saharan Africa. METHODS: We evaluated trends in hospital admissions and outpatient emergency department (ED) and general practitioner (GP) visits to South Africa's largest private healthcare system during 2016-2021. We fit time series models to historical data and, for March 2020-September 2021, quantified changes in encounters relative to baseline. RESULTS: The nationwide lockdown on 27 March 2020 led to sharp reductions in care-seeking behavior that persisted for 18 months after initial declines. For example, total admissions dropped 59.6% (95% confidence interval [CI], 52.4-66.8) during home confinement and were 33.2% (95% CI, 29-37.4) below baseline in September 2021. We identified 3 waves of all-cause respiratory encounters consistent with COVID-19 activity. Intestinal infections and non-COVID-19 respiratory illnesses experienced the most pronounced declines, with some diagnoses reduced 80%, even as nonpharmaceutical interventions (NPIs) relaxed. Non-respiratory hospitalizations, including injuries and acute illnesses, were 20%-60% below baseline throughout the pandemic and exhibited strong temporal associations with NPIs and mobility. ED attendances exhibited trends similar to those for hospitalizations, while GP visits were less impacted and have returned to pre-pandemic levels. CONCLUSIONS: We found substantially reduced use of health services during the pandemic for a range of conditions unrelated to COVID-19. Persistent declines in hospitalizations and ED visits indicate that high-risk patients are still delaying seeking care, which could lead to morbidity or mortality increases in the future.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Communicable Disease Control , Delivery of Health Care , Emergency Service, Hospital , Humans , Patient Acceptance of Health Care , Retrospective Studies , SARS-CoV-2 , South Africa/epidemiology
11.
Lancet ; 399(10323): 437-446, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1641746

ABSTRACT

BACKGROUND: The SARS-CoV-2 omicron variant of concern was identified in South Africa in November, 2021, and was associated with an increase in COVID-19 cases. We aimed to assess the clinical severity of infections with the omicron variant using S gene target failure (SGTF) on the Thermo Fisher Scientific TaqPath COVID-19 PCR test as a proxy. METHODS: We did data linkages for national, South African COVID-19 case data, SARS-CoV-2 laboratory test data, SARS-CoV-2 genome data, and COVID-19 hospital admissions data. For individuals diagnosed with COVID-19 via TaqPath PCR tests, infections were designated as either SGTF or non-SGTF. The delta variant was identified by genome sequencing. Using multivariable logistic regression models, we assessed disease severity and hospitalisations by comparing individuals with SGTF versus non-SGTF infections diagnosed between Oct 1 and Nov 30, 2021, and we further assessed disease severity by comparing SGTF-infected individuals diagnosed between Oct 1 and Nov 30, 2021, with delta variant-infected individuals diagnosed between April 1 and Nov 9, 2021. FINDINGS: From Oct 1 (week 39), 2021, to Dec 6 (week 49), 2021, 161 328 cases of COVID-19 were reported in South Africa. 38 282 people were diagnosed via TaqPath PCR tests and 29 721 SGTF infections and 1412 non-SGTF infections were identified. The proportion of SGTF infections increased from two (3·2%) of 63 in week 39 to 21 978 (97·9%) of 22 455 in week 48. After controlling for factors associated with hospitalisation, individuals with SGTF infections had significantly lower odds of admission than did those with non-SGTF infections (256 [2·4%] of 10 547 vs 121 [12·8%] of 948; adjusted odds ratio [aOR] 0·2, 95% CI 0·1-0·3). After controlling for factors associated with disease severity, the odds of severe disease were similar between hospitalised individuals with SGTF versus non-SGTF infections (42 [21%] of 204 vs 45 [40%] of 113; aOR 0·7, 95% CI 0·3-1·4). Compared with individuals with earlier delta variant infections, SGTF-infected individuals had a significantly lower odds of severe disease (496 [62·5%] of 793 vs 57 [23·4%] of 244; aOR 0·3, 95% CI 0·2-0·5), after controlling for factors associated with disease severity. INTERPRETATION: Our early analyses suggest a significantly reduced odds of hospitalisation among individuals with SGTF versus non-SGTF infections diagnosed during the same time period. SGTF-infected individuals had a significantly reduced odds of severe disease compared with individuals infected earlier with the delta variant. Some of this reduced severity is probably a result of previous immunity. FUNDING: The South African Medical Research Council, the South African National Department of Health, US Centers for Disease Control and Prevention, the African Society of Laboratory Medicine, Africa Centers for Disease Control and Prevention, the Bill & Melinda Gates Foundation, the Wellcome Trust, and the Fleming Fund.


Subject(s)
COVID-19/physiopathology , Hospitalization/statistics & numerical data , SARS-CoV-2/genetics , Severity of Illness Index , Adolescent , Adult , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , Female , Genome, Viral , Humans , Information Storage and Retrieval , Logistic Models , Male , Middle Aged , Multivariate Analysis , Odds Ratio , South Africa/epidemiology , Young Adult
12.
Influenza Other Respir Viruses ; 16(1): 34-47, 2022 01.
Article in English | MEDLINE | ID: covidwho-1526373

ABSTRACT

INTRODUCTION: We describe epidemiology and outcomes of confirmed SARS-CoV-2 infection and positive admissions among children <18 years in South Africa, an upper-middle income setting with high inequality. METHODS: Laboratory and hospital COVID-19 surveillance data, 28 January - 19 September 2020 was used. Testing rates were calculated as number of tested for SARS-CoV-2 divided by population at risk; test positivity rates were calculated as positive tests divided by total number of tests. In-hospital case fatality ratio (CFR) was calculated based on hospitalized positive admissions with outcome data who died in-hospital and whose death was judged SARS-CoV-2 related by attending physician. FINDINGS: 315 570 children aged <18 years were tested for SARS-CoV-2; representing 8.9% of all 3 548 738 tests and 1.6% of all children in the country. Of children tested, 46 137 (14.6%) were positive. Children made up 2.9% (n = 2007) of all SARS-CoV-2 positive admissions to sentinel hospitals. Among children, 47 died (2.6% case-fatality). In-hospital deaths were associated with male sex [adjusted odds ratio (aOR) 2.18 (95% confidence intervals [CI] 1.08-4.40)] vs female; age <1 year [aOR 4.11 (95% CI 1.08-15.54)], age 10-14 years [aOR 4.20 (95% CI1.07-16.44)], age 15-17 years [aOR 4.86 (95% 1.28-18.51)] vs age 1-4 years; admission to a public hospital [aOR 5.07(95% 2.01-12.76)] vs private hospital and ≥1 underlying conditions [aOR 12.09 (95% CI 4.19-34.89)] vs none. CONCLUSIONS: Children with underlying conditions were at greater risk of severe SARS-CoV-2 outcomes. Children > 10 years, those in certain provinces and those with underlying conditions should be considered for increased testing and vaccination.


Subject(s)
COVID-19 , Adolescent , Child , Child, Preschool , Female , Hospitals , Humans , Infant , Male , Risk Factors , SARS-CoV-2 , South Africa/epidemiology
13.
Vaccine ; 38(45): 7007-7014, 2020 10 21.
Article in English | MEDLINE | ID: covidwho-1452423

ABSTRACT

BACKGROUND: Data on influenza economic burden in risk groups for severe influenza are important to guide targeted influenza immunization, especially in resource-limited settings. However, this information is limited in low- and middle-income countries. METHODS: We estimated the cost (from a health system and societal perspective) and years of life lost (YLL) for influenza-associated illness in South Africa during 2013-2015 among (i) children aged 6-59 months, (ii) individuals aged 5-64 years with HIV, pulmonary tuberculosis (PTB) and selected underlying medical conditions (UMC), separately, (iii) pregnant women and (iv) individuals aged ≥65 years, using publicly available data and data collected through laboratory-confirmed influenza surveillance and costing studies. All costs were expressed in 2015 prices using the South Africa all-items Consumer Price Index. RESULTS: During 2013-2015, the mean annual cost of influenza-associated illness among the selected risk groups accounted for 52.1% ($140.9/$270.5 million) of the total influenza-associated illness cost (for the entire population of South Africa), 45.2% ($52.2/$115.5 million) of non-medically attended illness costs, 43.3% ($46.7/$107.9 million) of medically-attended mild illness costs and 89.3% ($42.0/$47.1 million) of medically-attended severe illness costs. The YLL among the selected risk groups accounted for 86.0% (262,069 /304,867 years) of the total YLL due to influenza-associated death. CONCLUSION: In South Africa, individuals in risk groups for severe influenza accounted for approximately half of the total influenza-associated illness cost but most of the cost of influenza-associated medically attended severe illness and YLL. This study provides the foundation for future studies on the cost-effectiveness of influenza immunization among risk groups.


Subject(s)
Cost of Illness , Influenza, Human , Adolescent , Adult , Aged , Child , Child, Preschool , Cost-Benefit Analysis , Female , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Middle Aged , Pregnancy , South Africa/epidemiology , Vaccination , Young Adult
14.
Lancet Glob Health ; 9(9): e1216-e1225, 2021 09.
Article in English | MEDLINE | ID: covidwho-1368858

ABSTRACT

BACKGROUND: The first wave of COVID-19 in South Africa peaked in July, 2020, and a larger second wave peaked in January, 2021, in which the SARS-CoV-2 501Y.V2 (Beta) lineage predominated. We aimed to compare in-hospital mortality and other patient characteristics between the first and second waves. METHODS: In this prospective cohort study, we analysed data from the DATCOV national active surveillance system for COVID-19 admissions to hospital from March 5, 2020, to March 27, 2021. The system contained data from all hospitals in South Africa that have admitted a patient with COVID-19. We used incidence risk for admission to hospital and determined cutoff dates to define five wave periods: pre-wave 1, wave 1, post-wave 1, wave 2, and post-wave 2. We compared the characteristics of patients with COVID-19 who were admitted to hospital in wave 1 and wave 2, and risk factors for in-hospital mortality accounting for wave period using random-effect multivariable logistic regression. FINDINGS: Peak rates of COVID-19 cases, admissions, and in-hospital deaths in the second wave exceeded rates in the first wave: COVID-19 cases, 240·4 cases per 100 000 people vs 136·0 cases per 100 000 people; admissions, 27·9 admissions per 100 000 people vs 16·1 admissions per 100 000 people; deaths, 8·3 deaths per 100 000 people vs 3·6 deaths per 100 000 people. The weekly average growth rate in hospital admissions was 20% in wave 1 and 43% in wave 2 (ratio of growth rate in wave 2 compared with wave 1 was 1·19, 95% CI 1·18-1·20). Compared with the first wave, individuals admitted to hospital in the second wave were more likely to be age 40-64 years (adjusted odds ratio [aOR] 1·22, 95% CI 1·14-1·31), and older than 65 years (aOR 1·38, 1·25-1·52), compared with younger than 40 years; of Mixed race (aOR 1·21, 1·06-1·38) compared with White race; and admitted in the public sector (aOR 1·65, 1·41-1·92); and less likely to be Black (aOR 0·53, 0·47-0·60) and Indian (aOR 0·77, 0·66-0·91), compared with White; and have a comorbid condition (aOR 0·60, 0·55-0·67). For multivariable analysis, after adjusting for weekly COVID-19 hospital admissions, there was a 31% increased risk of in-hospital mortality in the second wave (aOR 1·31, 95% CI 1·28-1·35). In-hospital case-fatality risk increased from 17·7% in weeks of low admission (<3500 admissions) to 26·9% in weeks of very high admission (>8000 admissions; aOR 1·24, 1·17-1·32). INTERPRETATION: In South Africa, the second wave was associated with higher incidence of COVID-19, more rapid increase in admissions to hospital, and increased in-hospital mortality. Although some of the increased mortality can be explained by admissions in the second wave being more likely in older individuals, in the public sector, and by the increased health system pressure, a residual increase in mortality of patients admitted to hospital could be related to the new Beta lineage. FUNDING: DATCOV as a national surveillance system is funded by the National Institute for Communicable Diseases and the South African National Government.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Adult , Aged , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , South Africa/epidemiology
15.
EClinicalMedicine ; 39: 101072, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1351633

ABSTRACT

BACKGROUND: We describe the epidemiology of COVID-19 in South Africa following importation and during implementation of stringent lockdown measures. METHODS: Using national surveillance data including demographics, laboratory test data, clinical presentation, risk exposures (travel history, contacts and occupation) and outcomes of persons undergoing COVID-19 testing or hospitalised with COVID-19 at sentinel surveillance sites, we generated and interpreted descriptive statistics, epidemic curves, and initial reproductive numbers (Rt). FINDINGS: From 4 March to 30 April 2020, 271,670 SARS-CoV-2 PCR tests were performed (462 tests/100,000 persons). Of these, 7,892 (2.9%) persons tested positive (median age 37 years (interquartile range 28-49 years), 4,568 (58%) male, cumulative incidence of 13.4 cases/100,000 persons). Hospitalization records were found for 1,271 patients (692 females (54%)) of whom 186 (14.6%) died. Amongst 2,819 cases with data, 489/2819 (17.3%) travelled internationally within 14 days prior to diagnosis, mostly during March 2020 (466 (95%)). Cases diagnosed in April compared with March were younger (median age, 37 vs. 40 years), less likely female (38% vs. 53%) and resident in a more populous province (98% vs. 91%). The national initial Rt was 2.08 (95% confidence interval (CI): 1.71-2.51). INTERPRETATION: The first eight weeks following COVID-19 importation were characterised by early predominance of imported cases and relatively low mortality and transmission rates. Despite stringent lockdown measures, the second month following importation was characterised by community transmission and increasing disease burden in more populous provinces.

16.
Lancet HIV ; 8(9): e554-e567, 2021 09.
Article in English | MEDLINE | ID: covidwho-1340936

ABSTRACT

BACKGROUND: The interaction between COVID-19, non-communicable diseases, and chronic infectious diseases such as HIV and tuberculosis is unclear, particularly in low-income and middle-income countries in Africa. South Africa has a national HIV prevalence of 19% among people aged 15-49 years and a tuberculosis prevalence of 0·7% in people of all ages. Using a nationally representative hospital surveillance system in South Africa, we aimed to investigate the factors associated with in-hospital mortality among patients with COVID-19. METHODS: In this cohort study, we used data submitted to DATCOV, a national active hospital surveillance system for COVID-19 hospital admissions, for patients admitted to hospital with laboratory-confirmed SARS-CoV-2 infection between March 5, 2020, and March 27, 2021. Age, sex, race or ethnicity, and comorbidities (hypertension, diabetes, chronic cardiac disease, chronic pulmonary disease and asthma, chronic renal disease, malignancy in the past 5 years, HIV, and past and current tuberculosis) were considered as risk factors for COVID-19-related in-hospital mortality. COVID-19 in-hospital mortality, the main outcome, was defined as a death related to COVID-19 that occurred during the hospital stay and excluded deaths that occurred because of other causes or after discharge from hospital; therefore, only patients with a known in-hospital outcome (died or discharged alive) were included. Chained equation multiple imputation was used to account for missing data and random-effects multivariable logistic regression models were used to assess the role of HIV status and underlying comorbidities on COVID-19 in-hospital mortality. FINDINGS: Among the 219 265 individuals admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and known in-hospital outcome data, 51 037 (23·3%) died. Most commonly observed comorbidities among individuals with available data were hypertension in 61 098 (37·4%) of 163 350, diabetes in 43 885 (27·4%) of 159 932, and HIV in 13 793 (9·1%) of 151 779. Tuberculosis was reported in 5282 (3·6%) of 146 381 individuals. Increasing age was the strongest predictor of COVID-19 in-hospital mortality. Other factors associated were HIV infection (adjusted odds ratio 1·34, 95% CI 1·27-1·43), past tuberculosis (1·26, 1·15-1·38), current tuberculosis (1·42, 1·22-1·64), and both past and current tuberculosis (1·48, 1·32-1·67) compared with never tuberculosis, as well as other described risk factors for COVID-19, such as male sex; non-White race; underlying hypertension, diabetes, chronic cardiac disease, chronic renal disease, and malignancy in the past 5 years; and treatment in the public health sector. After adjusting for other factors, people with HIV not on antiretroviral therapy (ART; adjusted odds ratio 1·45, 95% CI 1·22-1·72) were more likely to die in hospital than were people with HIV on ART. Among people with HIV, the prevalence of other comorbidities was 29·2% compared with 30·8% among HIV-uninfected individuals. Increasing number of comorbidities was associated with increased COVID-19 in-hospital mortality risk in both people with HIV and HIV-uninfected individuals. INTERPRETATION: Individuals identified as being at high risk of COVID-19 in-hospital mortality (older individuals and those with chronic comorbidities and people with HIV, particularly those not on ART) would benefit from COVID-19 prevention programmes such as vaccine prioritisation as well as early referral and treatment. FUNDING: South African National Government.


Subject(s)
COVID-19/mortality , HIV Infections/epidemiology , Tuberculosis/epidemiology , Anti-Retroviral Agents/therapeutic use , COVID-19/epidemiology , Cohort Studies , Comorbidity , Female , HIV Infections/drug therapy , Hospital Mortality , Humans , Male , Prevalence , Risk Factors , SARS-CoV-2 , South Africa/epidemiology
17.
Euro Surveill ; 26(29)2021 07.
Article in English | MEDLINE | ID: covidwho-1323058

ABSTRACT

BackgroundIn South Africa, COVID-19 control measures to prevent SARS-CoV-2 spread were initiated on 16 March 2020. Such measures may also impact the spread of other pathogens, including influenza virus and respiratory syncytial virus (RSV) with implications for future annual epidemics and expectations for the subsequent northern hemisphere winter.MethodsWe assessed the detection of influenza and RSV through facility-based syndromic surveillance of adults and children with mild or severe respiratory illness in South Africa from January to October 2020, and compared this with surveillance data from 2013 to 2019.ResultsFacility-based surveillance revealed a decline in influenza virus detection during the regular season compared with previous years. This was observed throughout the implementation of COVID-19 control measures. RSV detection decreased soon after the most stringent COVID-19 control measures commenced; however, an increase in RSV detection was observed after the typical season, following the re-opening of schools and the easing of measures.ConclusionCOVID-19 non-pharmaceutical interventions led to reduced circulation of influenza and RSV in South Africa. This has limited the country's ability to provide influenza virus strains for the selection of the annual influenza vaccine. Delayed increases in RSV case numbers may reflect the easing of COVID-19 control measures. An increase in influenza virus detection was not observed, suggesting that the measures may have impacted the two pathogens differently. The impact that lowered and/or delayed influenza and RSV circulation in 2020 will have on the intensity and severity of subsequent annual epidemics is unknown and warrants close monitoring.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Adult , Child , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , SARS-CoV-2 , South Africa/epidemiology
18.
Nat Med ; 27(3): 440-446, 2021 03.
Article in English | MEDLINE | ID: covidwho-1319035

ABSTRACT

The first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in South Africa was identified on 5 March 2020, and by 26 March the country was in full lockdown (Oxford stringency index of 90)1. Despite the early response, by November 2020, over 785,000 people in South Africa were infected, which accounted for approximately 50% of all known African infections2. In this study, we analyzed 1,365 near whole genomes and report the identification of 16 new lineages of SARS-CoV-2 isolated between 6 March and 26 August 2020. Most of these lineages have unique mutations that have not been identified elsewhere. We also show that three lineages (B.1.1.54, B.1.1.56 and C.1) spread widely in South Africa during the first wave, comprising ~42% of all infections in the country at the time. The newly identified C lineage of SARS-CoV-2, C.1, which has 16 nucleotide mutations as compared with the original Wuhan sequence, including one amino acid change on the spike protein, D614G (ref. 3), was the most geographically widespread lineage in South Africa by the end of August 2020. An early South African-specific lineage, B.1.106, which was identified in April 2020 (ref. 4), became extinct after nosocomial outbreaks were controlled in KwaZulu-Natal Province. Our findings show that genomic surveillance can be implemented on a large scale in Africa to identify new lineages and inform measures to control the spread of SARS-CoV-2. Such genomic surveillance presented in this study has been shown to be crucial in the identification of the 501Y.V2 variant in South Africa in December 2020 (ref. 5).


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Datasets as Topic , Genome, Viral , Humans , Molecular Typing , Mutation , Pandemics , Phylogeny , Phylogeography , Real-Time Polymerase Chain Reaction , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , South Africa/epidemiology , Whole Genome Sequencing
19.
Influenza Other Respir Viruses ; 15(4): 495-505, 2021 07.
Article in English | MEDLINE | ID: covidwho-1262334

ABSTRACT

BACKGROUND: Influenza surveillance helps time prevention and control interventions especially where complex seasonal patterns exist. We assessed influenza surveillance sustainability in Africa where influenza activity varies and external funds for surveillance have decreased. METHODS: We surveyed African Network for Influenza Surveillance and Epidemiology (ANISE) countries about 2011-2017 surveillance system characteristics. Data were summarized with descriptive statistics and analyzed with univariate and multivariable analyses to quantify sustained or expanded influenza surveillance capacity in Africa. RESULTS: Eighteen (75%) of 24 ANISE members participated in the survey; their cumulative population of 710 751 471 represent 56% of Africa's total population. All 18 countries scored a mean 95% on WHO laboratory quality assurance panels. The number of samples collected from severe acute respiratory infection case-patients remained consistent between 2011 and 2017 (13 823 vs 13 674 respectively) but decreased by 12% for influenza-like illness case-patients (16 210 vs 14 477). Nine (50%) gained capacity to lineage-type influenza B. The number of countries reporting each week to WHO FluNet increased from 15 (83%) in 2011 to 17 (94%) in 2017. CONCLUSIONS: Despite declines in external surveillance funding, ANISE countries gained additional laboratory testing capacity and continued influenza testing and reporting to WHO. These gains represent important achievements toward sustainable surveillance and epidemic/pandemic preparedness.


Subject(s)
Influenza, Human , Respiratory Tract Infections , Africa/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Respiratory Tract Infections/epidemiology , Surveys and Questionnaires
20.
Nature ; 592(7854): 438-443, 2021 04.
Article in English | MEDLINE | ID: covidwho-1164876

ABSTRACT

Continued uncontrolled transmission of SARS-CoV-2 in many parts of the world is creating conditions for substantial evolutionary changes to the virus1,2. Here we describe a newly arisen lineage of SARS-CoV-2 (designated 501Y.V2; also known as B.1.351 or 20H) that is defined by eight mutations in the spike protein, including three substitutions (K417N, E484K and N501Y) at residues in its receptor-binding domain that may have functional importance3-5. This lineage was identified in South Africa after the first wave of the epidemic in a severely affected metropolitan area (Nelson Mandela Bay) that is located on the coast of the Eastern Cape province. This lineage spread rapidly, and became dominant in Eastern Cape, Western Cape and KwaZulu-Natal provinces within weeks. Although the full import of the mutations is yet to be determined, the genomic data-which show rapid expansion and displacement of other lineages in several regions-suggest that this lineage is associated with a selection advantage that most plausibly results from increased transmissibility or immune escape6-8.


Subject(s)
COVID-19/virology , Mutation , Phylogeny , Phylogeography , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , DNA Mutational Analysis , Evolution, Molecular , Genetic Fitness , Humans , Immune Evasion , Models, Molecular , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Selection, Genetic , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL